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1. INTRODUCTION

1.1. Let:Y" be the class of all trigonometric polynomials

"
l,,(ln = L cv e

iv8

\.' = -n

of degree n. It was found by Zygmund [15] that if I"E.r", then, for
I~p<+oo.

( I )

Since (1) was deduced from M. Riesz's interpolation formula [12] by
means of Minkowski's inequality, it was not clear whether the restriction
on p was indeed essential. This question was open for a long time. Finally,
Arestov [2] proved that (I ) remains true for 0 < p < I and indeed for p = 0
as well, where

111"11[-,,.,,].0:= exp (21n [" log 11,,(0)1 dO).
The difficulty which was associated with Zygmund's inequality (1) is
characteristic of several other LP inequalities involving polynomials,
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trigonometric polynomials, etc. The purpose of this paper is to mention a
few which, like (1), can be extended to p E [0, 1).

1.2. Let.?;" be the set of all polynomials

n

P(z) = L avzv

v=o

of degree at most n. For P E.?;" define

(
1 " ) lip

IIPll p := 2n L" IP(ei/lW de

IIPlloo := max IP(z)1
Izi ~ I

and

(0 <p < +(0),

IIPllo:= exp (2~ [" log IP(ei/l)1 de).

The above result of Zygmund and Arestov says that, in particular, for
PE.?;" and O~p~ +00,

(2)

where equality holds if and only if P(z) = czn
. If P(z) # 0 for Izi < 1 then,

for 1~p ~ +00, inequality (2) can be replaced by [4,7]

(3 )

We prove

THEOREM 1. Let P E.?;" and P(z) # 0 for Izi < 1. Then (3) holds for all
p E [0, +00]'

1.3. It is a simple consequence of a classical result of Hardy [6]
that if P E .?;", then [11, Theorem 5.5], for R ~ 1 and p ~ 0,

(4 )

where equality is attained if and only if P(z) = czn
• If P(z) #0 for Izi < 1,

then for 1~p ~ +00 inequality (4) can be replaced by [1,3]

(5)
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We prove
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THEOREM 2. Let PE.?}" andP(z)#Ofor Izl<1. Then (5) holds for all
pE[O,+oo].

1.4. If
n

P(z)= L ayZYE.?}"
y~O

and au, av (u<v) are two coefficients such that for no other coefficient
a... #0 we have w=u mod(v-u), then [14,5,9] for every pE [1,+00],

(6)

This result is best possible. We prove

THEOREM 3. In the case u = 0, v = n, inequality (6) holds for all
pE[O,+oo].

Remark. It may be mentioned that inequality (6) in its full generality
does not extend to p E [0, 1). To see this let

P(z) = (1 + Z)4 = 1 + 4z + 6z 2 + 4z 3 + Z4.

Then the pair of indices (u,v)=(1,3) IS clearly admissible. But
lall + la3 1 = 8, whereas for p =!,

As an application of Theorem 3 we mention.

COROLLARY. Consider a polynomial n~~ I (z - C). Then, for 1~ k ~ n
and all p E [0, +00],

1'1'2 ''''k-ll + I'k'k+l ""nl ~211Pllpllll+znll p· (7)

This result extends Theorem 2 in [10] and lends itself to the kind of
applications mentioned therein.

2. A LEMMA

For I' = (1'0' ..., I'n) Ecn
+ 1 and

n

P(Z) = L ayZ
Y

,

v=o



we define
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n

Ai,P(z) = L y.a"z·.
"~ 0
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The operator A"I is said to be admissible if it preserves one of the following
properties:

(i) P(z) has all its zeros in {ZEC: Izi ~ I},

(ii) P(z) has all its zeros in {z E C: Izi ~ 1}.

LEMMA [2, Theorem 4]. Let iP(x) = "'(log x), where'" is a convex non­
-decreasing function on IR. Then for all P E &:. and each admissible operator

Ai"

(8)

where c(y, n) = max(IYol, IYnl).

In particular, the lemma applies with iP: x f-+ x P for every p E (0, + 00)

and with iP: x f-+ log x as well. Therefore we have

(O~p< +00). (9 )

3. PROOFS OF THE THEOREMS

Proof of Theorem 1. According to a theorem of Laguerre as stated in
[4], if PEg;" does not vanish in K := {z E C: 1Z I < 1}, then

nP(z) - (z - 0 P'(z) # 0 for z E K and 'E K.

Setting' = -e i~Z, we readily see that the operator A defined by

is admissible and so by (9)

(10)

for p > O. Rearranging the left-hand side of (10) and integrating the
inequality with respect to IX on [0, 2n], we obtain

(11 )
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where
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R(8):= (~ p(eiO)_inp(eiO))!~p(eiO).
It is known [4, Theorem 2] that if P(z) # 0 for Izi < 1, then IR(8)1 ~ 1, and
therefore by a theorem of Hardy

fb fb
o 11+ei"R(8WdlY.~ 0 11+ei"I P dlY.

for all 8 E [0, 2n]. Using this in (11), the desired result follows immediately
for p > O. The extension to p = 0 is obtained by continuity.

Proof of Theorem 2. For R ~ 1 and}' E IR, the polynomial

vto C) (Rv+eiYRn-v)zV

has all its zeros on the unit circle (see [8, Problem 26, p. 108]). Hence, if

n

P(z) = I avzV
E &:,

\1=0

does not vanish for Izl < 1, then by Szego's convolution theorem [13] the
same is true for

AP(z):= (l+eiYRn)ao+(R+eiYRn-l)alz+ ... +(Rn+eiY)anzn

= P(Rz) + eiyRnP(zIR).

Therefore A is an admissible operator. Applying (9) we obtain

(12)

for p > O. Since

f(z):= znp(l/z)IP(z)

is holomorphic for Izi ~ 1 with If(z)1 = 1 on the unit circle, it follows from
the maximum principle that 1f( (11R) eiO)1 ~ 1 for IIR < 1 and so

(R~ 1). (13)

Now, integrating (12) with respect to }' on [0,2n] and using (13), the
desired result is obtained in the same way as Theorem 1.
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Proof of Theorem 3. The operator A defined by

A (± avzv): = ao + anzn

\1=0

is obviously admissible. Hence by (9)

for all p > O. From the inequality

we deduce that

Using this in conjunction with (14), the desired result follows.
The corollary is obtained by applying Theorem 3 to the polynomial

n ((z -1)
Q(z):= P(z) TI ~.

j~ k Z <'1
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