# L<sup>p</sup> Inequalities for Polynomials

### Q. I. RAHMAN

Départment de mathématiques et de statistique, Université de Montréal, Montréal, Québec H3C 3J7, Canada

AND

### G. SCHMEISSER

Mathematisches Institut, Universität Erlangen-Nürnberg, D-8520 Erlangen, West Germany

> Communicated by T. J. Rivlin Received July 23, 1985

#### 1. Introduction

## 1.1. Let $\mathcal{T}_n$ be the class of all trigonometric polynomials

$$t_n(\theta) = \sum_{v=-n}^{n} c_v e^{iv\theta}$$

of degree n. It was found by Zygmund [15] that if  $t_n \in \mathcal{T}_n$ , then, for  $1 \le p < +\infty$ ,

$$\left(\frac{1}{2\pi}\int_{-\pi}^{\pi}|t_{n}'(\theta)|^{p}d\theta\right)^{1/p} \leqslant n\left(\frac{1}{2\pi}\int_{-\pi}^{\pi}|t_{n}(\theta)|^{p}d\theta\right)^{1/p} =: \|t_{n}\|_{[-\pi, \pi], p}. \tag{1}$$

Since (1) was deduced from M. Riesz's interpolation formula [12] by means of Minkowski's inequality, it was not clear whether the restriction on p was indeed essential. This question was open for a long time. Finally, Arestov [2] proved that (1) remains true for 0 and indeed for <math>p = 0 as well, where

$$||t_n||_{[-\pi,\pi],0} := \exp\left(\frac{1}{2\pi} \int_{-\pi}^{\pi} \log|t_n(\theta)| d\theta\right).$$

The difficulty which was associated with Zygmund's inequality (1) is characteristic of several other  $L^{\rho}$  inequalities involving polynomials,

trigonometric polynomials, etc. The purpose of this paper is to mention a few which, like (1), can be extended to  $p \in [0, 1)$ .

## 1.2. Let $\mathscr{P}_n$ be the set of all polynomials

$$P(z) = \sum_{v=0}^{n} a_v z^v$$

of degree at most n. For  $P \in \mathcal{P}_n$  define

$$||P||_{p} := \left(\frac{1}{2\pi} \int_{-\pi}^{\pi} |P(e^{i\theta})|^{p} d\theta\right)^{1/p} \qquad (0 
$$||P||_{\infty} := \max_{|z| = 1} |P(z)|$$$$

and

$$||P||_0 := \exp\left(\frac{1}{2\pi}\int_{-\pi}^{\pi} \log|P(e^{i\theta})| d\theta\right).$$

The above result of Zygmund and Arestov says that, in particular, for  $P \in \mathcal{P}_n$  and  $0 \le p \le +\infty$ ,

$$||P'||_p \leqslant n ||P||_p, \tag{2}$$

where equality holds if and only if  $P(z) = cz^n$ . If  $P(z) \neq 0$  for |z| < 1 then, for  $1 \leq p \leq +\infty$ , inequality (2) can be replaced by [4, 7]

$$||P'||_{p} \le n ||P||_{p} / ||1 + z^{n}||_{p}.$$
 (3)

We prove

THEOREM 1. Let  $P \in \mathcal{P}_n$  and  $P(z) \neq 0$  for |z| < 1. Then (3) holds for all  $p \in [0, +\infty]$ .

1.3. It is a simple consequence of a classical result of Hardy [6] that if  $P \in \mathcal{P}_n$ , then [11, Theorem 5.5], for  $R \ge 1$  and  $p \ge 0$ ,

$$||P(Rz)||_{p} \leqslant R^{n} ||P||_{p}, \tag{4}$$

where equality is attained if and only if  $P(z) = cz^n$ . If  $P(z) \neq 0$  for |z| < 1, then for  $1 \leq p \leq +\infty$  inequality (4) can be replaced by [1, 3]

$$||P(Rz)||_{p} \leq \frac{||1 + R^{n}z^{n}||_{p}}{||1 + z^{n}||_{p}} \cdot ||P||_{p}.$$
 (5)

We prove

THEOREM 2. Let  $P \in \mathcal{P}_n$  and  $P(z) \neq 0$  for |z| < 1. Then (5) holds for all  $p \in [0, +\infty]$ .

#### **1.4.** If

$$P(z) = \sum_{\nu=0}^{n} a_{\nu} z^{\nu} \in \mathscr{P}_{n}$$

and  $a_u$ ,  $a_v$  (u < v) are two coefficients such that for no other coefficient  $a_w \ne 0$  we have  $w \equiv u \mod(v - u)$ , then [14, 5, 9] for every  $p \in [1, +\infty]$ ,

$$|a_u| + |a_v| \le 2 \|P\|_p / \|1 + z^n\|_p.$$
 (6)

This result is best possible. We prove

Theorem 3. In the case u = 0, v = n, inequality (6) holds for all  $p \in [0, +\infty]$ .

*Remark.* It may be mentioned that inequality (6) in its full generality does not extend to  $p \in [0, 1)$ . To see this let

$$P(z) = (1+z)^4 = 1 + 4z + 6z^2 + 4z^3 + z^4.$$

Then the pair of indices (u, v) = (1, 3) is clearly admissible. But  $|a_1| + |a_3| = 8$ , whereas for  $p = \frac{1}{2}$ ,

$$2 \|P\|_{p} / \|1 + z^{n}\|_{p} = \frac{8}{\|1 + z\|_{1/2}} < \frac{8}{\|1 + z\|_{0}} = 8.$$

As an application of Theorem 3 we mention.

COROLLARY. Consider a polynomial  $\prod_{\nu=1}^{n} (z - \zeta_{\nu})$ . Then, for  $1 \le k \le n$  and all  $p \in [0, +\infty]$ ,

$$|\zeta_1\zeta_2\cdots\zeta_{k-1}| + |\zeta_k\zeta_{k+1}\cdots\zeta_n| \le 2 \|P\|_p/\|1 + z^n\|_p.$$
 (7)

This result extends Theorem 2 in [10] and lends itself to the kind of applications mentioned therein.

### 2. A LEMMA

For  $\gamma = (\gamma_0, ..., \gamma_n) \in \mathbb{C}^{n+1}$  and

$$P(z) = \sum_{\nu=0}^{n} a_{\nu} z^{\nu},$$

we define

$$\Lambda_{\gamma}P(z)=\sum_{v=0}^{n}\gamma_{v}a_{v}z^{v}.$$

The operator  $\Lambda_{\gamma}$  is said to be *admissible* if it preserves one of the following properties:

- (i) P(z) has all its zeros in  $\{z \in \mathbb{C}: |z| \le 1\}$ ,
- (ii) P(z) has all its zeros in  $\{z \in \mathbb{C} : |z| \ge 1\}$ .

LEMMA [2, Theorem 4]. Let  $\phi(x) = \psi(\log x)$ , where  $\psi$  is a convex non-decreasing function on  $\mathbb{R}$ . Then for all  $P \in \mathcal{P}_n$  and each admissible operator  $\Lambda_{\gamma}$ ,

$$\int_0^{2\pi} \phi(|\Lambda_{\gamma} P(e^{i\theta})|) d\theta \leqslant \int_0^{2\pi} \phi(c(\gamma, n) |P(e^{i\theta})|) d\theta, \tag{8}$$

where  $c(\gamma, n) = \max(|\gamma_0|, |\gamma_n|)$ .

In particular, the lemma applies with  $\phi: x \mapsto x^p$  for every  $p \in (0, +\infty)$  and with  $\phi: x \mapsto \log x$  as well. Therefore we have

$$||A, P||_{p} \le c(\gamma, n) ||P||_{p} \qquad (0 \le p < +\infty).$$
 (9)

### 3. Proofs of the Theorems

*Proof of Theorem* 1. According to a theorem of Laguerre as stated in [4], if  $P \in \mathcal{P}_n$  does not vanish in  $K := \{z \in \mathbb{C} : |z| < 1\}$ , then

$$nP(z) - (z - \zeta) P'(z) \neq 0$$
 for  $z \in K$  and  $\zeta \in K$ .

Setting  $\zeta = -e^{-i\alpha}z$ , we readily see that the operator  $\Lambda$  defined by

$$\Lambda P(z) := (e^{i\alpha} + 1) z P'(z) - n e^{i\alpha} P(z)$$

is admissible and so by (9)

$$\int_0^{2\pi} \left| (e^{i\alpha} + 1) \frac{d}{d\theta} P(e^{i\theta}) - ine^{i\alpha} P(e^{i\theta}) \right|^p d\theta \leqslant n^p \int_0^{2\pi} |P(e^{i\theta})|^p d\theta \qquad (10)$$

for p > 0. Rearranging the left-hand side of (10) and integrating the inequality with respect to  $\alpha$  on  $[0, 2\pi]$ , we obtain

$$\int_{0}^{2\pi} \int_{0}^{2\pi} \left| \frac{d}{d\theta} P(e^{i\theta}) \right|^{p} \cdot |1 + e^{i\alpha} R(\theta)|^{p} d\theta d\alpha \leq 2\pi n^{p} \|P\|_{p}^{p}, \tag{11}$$

where

$$R(\theta) := \left(\frac{d}{d\theta} P(e^{i\theta}) - inP(e^{i\theta})\right) \left| \frac{d}{d\theta} P(e^{i\theta})\right|.$$

It is known [4, Theorem 2] that if  $P(z) \neq 0$  for |z| < 1, then  $|R(\theta)| \geqslant 1$ , and therefore by a theorem of Hardy

$$\int_0^{2\pi} |1 + e^{i\alpha} R(\theta)|^p d\alpha \geqslant \int_0^{2\pi} |1 + e^{i\alpha}|^p d\alpha$$

for all  $\theta \in [0, 2\pi]$ . Using this in (11), the desired result follows immediately for p > 0. The extension to p = 0 is obtained by continuity.

*Proof of Theorem* 2. For  $R \ge 1$  and  $\gamma \in \mathbb{R}$ , the polynomial

$$\sum_{v=0}^{n} \binom{n}{v} \left( R^{v} + e^{iy} R^{n-v} \right) z^{v}$$

has all its zeros on the unit circle (see [8, Problem 26, p. 108]). Hence, if

$$P(z) = \sum_{\nu=0}^{n} a_{\nu} z^{\nu} \in \mathscr{P}_{n}$$

does not vanish for |z| < 1, then by Szegö's convolution theorem [13] the same is true for

$$\Lambda P(z) := (1 + e^{i\gamma} R^n) a_0 + (R + e^{i\gamma} R^{n-1}) a_1 z + \dots + (R^n + e^{i\gamma}) a_n z^n$$
  
=  $P(Rz) + e^{i\gamma} R^n P(z/R)$ .

Therefore  $\Lambda$  is an admissible operator. Applying (9) we obtain

$$\int_{0}^{2\pi} |P(Re^{i\theta}) + e^{i\gamma} R^{n} P(e^{i\theta}/R)|^{p} d\theta \le |R^{n} e^{i\gamma} + 1| \cdot ||P||_{p}^{p}$$
 (12)

for p > 0. Since

$$f(z) := z^n \overline{P(1/\overline{z})}/P(z)$$

is holomorphic for  $|z| \le 1$  with |f(z)| = 1 on the unit circle, it follows from the maximum principle that  $|f((1/R)e^{i\theta})| \le 1$  for 1/R < 1 and so

$$|R^n P(e^{i\theta}/R)/P(Re^{i\theta})| \ge 1 \qquad (R \ge 1). \tag{13}$$

Now, integrating (12) with respect to  $\gamma$  on  $[0, 2\pi]$  and using (13), the desired result is obtained in the same way as Theorem 1.

*Proof of Theorem* 3. The operator  $\Lambda$  defined by

$$\Lambda\left(\sum_{v=0}^{n} a_{v} z^{v}\right) := a_{0} + a_{n} z^{n}$$

is obviously admissible. Hence by (9)

$$\int_0^{2\pi} |a_0 + a_n e^{in\theta}|^p d\theta \leqslant \int_0^{2\pi} \left| \sum_{v=0}^n a_v e^{iv\theta} \right|^p d\theta \tag{14}$$

for all p > 0. From the inequality

$$\left| \frac{1 + re^{i\theta}}{1 + e^{i\theta}} \right| \geqslant \frac{1 + r}{2}$$

we deduce that

$$|a_0| + |a_n| \le 2 \left( \int_0^{2\pi} |a_0 + a_n e^{i\theta}|^p d\theta / \int_0^{2\pi} |1 + e^{i\theta}|^p d\theta \right)^{1/p}.$$

Using this in conjunction with (14), the desired result follows.

The corollary is obtained by applying Theorem 3 to the polynomial

$$Q(z) := P(z) \prod_{j=k}^{n} \left( \frac{\zeta_{j}z - 1}{z - \zeta_{j}} \right).$$

### REFERENCES

- N. C. Ankeny and T. J. Rivlin, On a theorem of S. Bernstein, Pacific J. Math. 5 (1955), 849-852.
- V. V. ARESTOV, On integral inequalities for trigonometric polynomials and their derivatives, *Izv. Akad. Nauk SSSR Ser. Mat.* 45 (1981), 3-22 [in Russian]; English translation: *Math. USSR-Izv.* 18 (1982), 1-17.
- R. P. Boas and Q. I. Rahman, L<sup>p</sup> inequalities for polynomials and entire functions, Arch. Rational Mech. Anal. 11 (1962), 34-39.
- N. G. DE BRUIJN, Inequalities concerning polynomials in the complex domain, Nederl. Akad. Wetensch. Proc. 50 (1947), 1265-1272 [= Indag. Math. 9 (1947), 591-598].
- J. G. VAN DER CORPUT AND C. VISSER, Inequalities concerning polynomials and trigonometric polynomials, Nederl. Akad. Wetensch. Proc. 49 (1946), 383-392 [= Indag. Math. 8 (1946), 238-247].
- G. H. HARDY, The mean value of the modulus of an analytic function, Proc. London Math. Soc. 14 (1915), 269-277.
- P. D. Lax, Proof of a conjecture of P. Erdös on the derivative of a polynomial, Bull. Amer. Math. Soc. 50 (1944), 509-513.
- G. PÓLYA AND G. SZEGÖ, "Problems and Theorems in Analysis," Vol. 1, Springer-Verlag, New York/Heidelberg/Berlin, 1972.

- Q. I. RAHMAN, Inequalities concerning polynomials and trigonometric polynomials, J. Math. Anal. Appl. 6 (1963), 303-324.
- 10. Q. I. RAHMAN AND G. SCHMEISSER, Location of the zeros of polynomials with a prescribed norm, *Trans. Amer. Math. Soc.* **196** (1974), 69–78.
- 11. Q. I. RAHMAN AND G. SCHMEISSER, "Les inégalités de Markoff et de Bernstein," Presses Univ. Montréal, Montréal, Québec, 1983.
- 12. M. Riesz, Formule d'interpolation pour la dérivée d'un polynôme trigonométrique, C. R. Acad. Sci. Paris 158 (1914), 1152-1154.
- 13. G. SZEGÖ, Bemerkungen zu einem Satz von J. H. Grace über die Wurzeln algebraischer Gleichungen, *Math. Z.* 13 (1922), 28-55.
- 14. C. VISSER, A simple proof of certain inequalities concerning polynomials, Nederl. Akad. Wetensch. Proc. 48 (1945), 276-281 [= Indag. Math. 7 (1945), 81-86].
- 15. A. ZYGMUND, A remark on conjugate series, Proc. London Math. Soc. (2) 34 (1932), 392-400.