L^{p} Inequalities for Polynomials

Q. I. Rahman

Départment de mathématiques et de statistique, Université de Moniréal, Montréal, Québec H3C 3J7. Canada

AND

G. Schmeisser

Mathematisches Institut, Universität Erlangen-Nürnberg, D-8520 Erlangen, West Germany

Communicuted by T.J. Rivlin
Received July 23, 1985

1. Introduction

1.1. Let \mathscr{I}_{n} be the class of all trigonometric polynomials

$$
t_{n}(\theta)=\sum_{v=-n}^{n} c_{v} e^{i v \theta}
$$

of degree n. It was found by Zygmund [15] that if $t_{n} \in \mathscr{T}_{n}$, then, for $1 \leqslant p<+\infty$,

$$
\begin{equation*}
\left(\frac{1}{2 \pi} \int_{-\pi}^{\pi}\left|t_{n}^{\prime}(\theta)\right|^{p} d \theta\right)^{1 / p} \leqslant n\left(\frac{1}{2 \pi} \int_{-\pi}^{\pi}\left|t_{n}(\theta)\right|^{p} d \theta\right)^{1 / p}=:\left\|t_{n}\right\|_{[-\pi, \pi], p} . \tag{1}
\end{equation*}
$$

Since (1) was deduced from M. Riesz's interpolation formula [12] by means of Minkowski's inequality, it was not clear whether the restriction on p was indeed essential. This question was open for a long time. Finally, Arestov [2] proved that (1) remains true for $0<p<1$ and indeed for $p=0$ as well, where

$$
\left\|t_{n}\right\|_{[-\pi . \pi], 0}:=\exp \left(\frac{1}{2 \pi} \int_{-\pi}^{\pi} \log \left|t_{n}(\theta)\right| d \theta\right) .
$$

The difficulty which was associated with Zygmund's inequality (1) is characteristic of several other L^{p} inequalities involving polynomials, 26
trigonometric polynomials, etc. The purpose of this paper is to mention a few which, like (1), can be extended to $p \in[0,1)$.
1.2. Let \mathscr{P}_{n} be the set of all polynomials

$$
P(z)=\sum_{v=0}^{n} a_{v} z^{v}
$$

of degree at most n. For $P \in \mathscr{P}_{n}$ define

$$
\begin{aligned}
\|P\|_{p} & :=\left(\frac{1}{2 \pi} \int_{-\pi}^{\pi}\left|P\left(e^{i \theta}\right)\right|^{p} d \theta\right)^{1 / p} \quad(0<p<+\infty), \\
\|P\|_{\infty} & :=\max _{|z|=1}|P(z)|
\end{aligned}
$$

and

$$
\|P\|_{0}:=\exp \left(\frac{1}{2 \pi} \int_{-\pi}^{\pi} \log \left|P\left(e^{i \theta}\right)\right| d \theta\right) .
$$

The above result of Zygmund and Arestov says that, in particular, for $P \in \mathscr{P}_{n}$ and $0 \leqslant p \leqslant+\infty$,

$$
\begin{equation*}
\left\|P^{\prime}\right\|_{p} \leqslant n\|P\|_{p}, \tag{2}
\end{equation*}
$$

where equality holds if and only if $P(z)=c z^{n}$. If $P(z) \neq 0$ for $|z|<1$ then, for $1 \leqslant p \leqslant+\infty$, inequality (2) can be replaced by $[4,7]$

$$
\begin{equation*}
\left\|P^{\prime}\right\|_{p} \leqslant n\|P\|_{p} /\left\|1+z^{n}\right\|_{p} . \tag{3}
\end{equation*}
$$

We prove
Theorem 1. Let $P \in \mathscr{P}_{n}$ and $P(z) \neq 0$ for $|z|<1$. Then (3) holds for all $p \in[0,+\infty]$.
1.3. It is a simple consequence of a classical result of Hardy [6] that if $P \in \mathscr{P}_{n}$, then [11, Theorem 5.5], for $R \geqslant 1$ and $p \geqslant 0$,

$$
\begin{equation*}
\|P(R z)\|_{p} \leqslant R^{n}\|P\|_{P} \tag{4}
\end{equation*}
$$

where equality is attained if and only if $P(z)=c z^{n}$. If $P(z) \neq 0$ for $|z|<1$, then for $1 \leqslant p \leqslant+\infty$ inequality (4) can be replaced by $[1,3]$

$$
\begin{equation*}
\|P(R z)\|_{p} \leqslant \frac{\left\|1+R^{n} z^{n}\right\|_{p}}{\left\|1+z^{n}\right\|_{p}} \cdot\|P\|_{p} . \tag{5}
\end{equation*}
$$

We prove

Theorem 2. Let $P \in \mathscr{P}_{n}$ and $P(z) \neq 0$ for $|z|<1$. Then (5) holds for all $p \in[0,+\infty]$.
1.4. If

$$
P(z)=\sum_{v=0}^{n} a_{\nu} z^{v} \in \mathscr{P}_{n}
$$

and $a_{u}, a_{v}(u<v)$ are two coefficients such that for no other coefficient $a_{w} \neq 0$ we have $w \equiv u \bmod (v-u)$, then $[14,5,9]$ for every $p \in[1,+\infty]$,

$$
\begin{equation*}
\left|a_{u}\right|+\left|a_{v}\right| \leqslant 2\|P\|_{p} /\left\|1+z^{n}\right\|_{p} \tag{6}
\end{equation*}
$$

This result is best possible. We prove
THEOREM 3. In the case $u=0, v=n$, inequality (6) holds for all $p \in[0,+\infty]$.

Remark. It may be mentioned that inequality (6) in its full generality does not extend to $p \in[0,1)$. To see this let

$$
P(z)=(1+z)^{4}=1+4 z+6 z^{2}+4 z^{3}+z^{4}
$$

Then the pair of indices $(u, v)=(1,3)$ is clearly admissible. But $\left|a_{1}\right|+\left|a_{3}\right|=8$, whereas for $p=\frac{1}{2}$,

$$
2\|P\|_{p} /\left\|1+z^{n}\right\|_{p}=\frac{8}{\|1+z\|_{1 / 2}}<\frac{8}{\|1+z\|_{0}}=8
$$

As an application of Theorem 3 we mention.
Corollary. Consider a polynomial $\prod_{v=1}^{n}\left(z-\zeta_{v}\right)$. Then, for $1 \leqslant k \leqslant n$ and all $p \in[0,+\infty]$,

$$
\begin{equation*}
\left|\zeta_{1} \zeta_{2} \cdots \zeta_{k-1}\right|+\left|\zeta_{k} \zeta_{k+1} \cdots \zeta_{n}\right| \leqslant 2\|P\|_{p} /\left\|1+z^{n}\right\|_{p} \tag{7}
\end{equation*}
$$

This result extends Theorem 2 in [10] and lends itself to the kind of applications mentioned therein.

2. A Lemma

For $\gamma=\left(\gamma_{0}, \ldots, \gamma_{n}\right) \in \mathbb{C}^{n+1}$ and

$$
P(z)=\sum_{v=0}^{n} a_{v} z^{v}
$$

we define

$$
\Lambda_{y} P(z)=\sum_{v=0}^{n} \gamma_{v} a_{v} z^{v}
$$

The operator Λ_{γ} is said to be admissible if it preserves one of the following properties:
(i) $P(z)$ has all its zeros in $\{z \in \mathbb{C}:|z| \leqslant 1\}$,
(ii) $P(z)$ has all its zeros in $\{z \in \mathbb{C}:|z| \geqslant 1\}$.

Lemma [2, Theorem 4]. Let $\phi(x)=\psi(\log x)$, where ψ is a convex non--decreasing function on \mathbb{R}. Then for all $P \in \mathscr{P}_{n}$ and each admissible operator Λ_{i},

$$
\begin{equation*}
\int_{0}^{2 \pi} \phi\left(\left|A_{\gamma} P\left(e^{i \theta}\right)\right|\right) d \theta \leqslant \int_{0}^{2 \pi} \phi\left(c(\gamma, n)\left|P\left(e^{i \theta}\right)\right|\right) d \theta \tag{8}
\end{equation*}
$$

where $c(\gamma, n)=\max \left(\left|\gamma_{0}\right| .\left|\gamma_{n}\right|\right)$.
In particular, the lemma applies with $\phi: x \mapsto x^{p}$ for every $p \in(0,+\infty)$ and with $\phi: x \mapsto \log x$ as well. Therefore we have

$$
\begin{equation*}
\left\|A_{\eta} P\right\|_{p} \leqslant c(\gamma, n)\|P\|_{p} \quad(0 \leqslant p<+\infty) . \tag{9}
\end{equation*}
$$

3. Proofs of the Theorems

Proof of Theorem 1. According to a theorem of Laguerre as stated in [4], if $P \in \mathscr{P}_{n}$ does not vanish in $K:=\{z \in \mathbb{C}:|z|<1\}$, then

$$
n P(z)-(z-\zeta) P^{\prime}(z) \neq 0 \quad \text { for } \quad z \in K \text { and } \zeta \in K
$$

Setting $\zeta=-e^{i x_{z}}$, we readily see that the operator Λ defined by

$$
\Lambda P(z):=\left(e^{i \alpha}+1\right) z P^{\prime}(z)-n e^{i x} P(z)
$$

is admissible and so by (9)

$$
\begin{equation*}
\int_{0}^{2 \pi}\left|\left(e^{i x}+1\right) \frac{d}{d \theta} P\left(e^{i \theta}\right)-i n e^{i x} P\left(e^{i \theta}\right)\right|^{p} d \theta \leqslant n^{p} \int_{0}^{2 \pi}\left|P\left(e^{i \theta}\right)\right|^{p} d \theta \tag{10}
\end{equation*}
$$

for $p>0$. Rearranging the left-hand side of (10) and integrating the inequality with respect to α on $[0,2 \pi]$, we obtain

$$
\begin{equation*}
\int_{0}^{2 \pi} \int_{0}^{2 \pi}\left|\frac{d}{d \theta} P\left(e^{i \theta}\right)\right|^{p} \cdot\left|1+e^{i \alpha} R(\theta)\right|^{p} d \theta d \alpha \leqslant 2 \pi n^{p}\|P\|_{p}^{p} \tag{11}
\end{equation*}
$$

where

$$
R(\theta):=\left(\frac{d}{d \theta} P\left(e^{i \theta}\right)-\operatorname{in} P\left(e^{i \theta}\right)\right) / \frac{d}{d \theta} P\left(e^{i \theta}\right)
$$

It is known [4, Theorem 2] that if $P(z) \neq 0$ for $|z|<1$, then $|R(\theta)| \geqslant 1$, and therefore by a theorem of Hardy

$$
\int_{0}^{2 \pi}\left|1+e^{i \alpha} R(\theta)\right|^{p} d \alpha \geqslant \int_{0}^{2 \pi}\left|1+e^{i \alpha}\right|^{p} d \alpha
$$

for all $\theta \in[0,2 \pi]$. Using this in (11), the desired result follows immediately for $p>0$. The extension to $p=0$ is obtained by continuity.

Proof of Theorem 2. For $R \geqslant 1$ and $\gamma \in \mathbb{R}$, the polynomial

$$
\sum_{v=0}^{n}\binom{n}{v}\left(R^{v}+e^{i v} R^{n-v}\right) z^{v}
$$

has all its zeros on the unit circle (see [8, Problem 26, p. 108]). Hence, if

$$
P(z)=\sum_{v=0}^{n} a_{v} z^{v} \in \mathscr{P}_{n}
$$

does not vanish for $|z|<1$, then by Szegö's convolution theorem [13] the same is true for

$$
\begin{aligned}
\Lambda P(z): & =\left(1+e^{i \gamma} R^{n}\right) a_{0}+\left(R+e^{i \gamma} R^{n-1}\right) a_{1} z+\cdots+\left(R^{n}+e^{i \gamma}\right) a_{n} z^{n} \\
& =P(R z)+e^{i \gamma} R^{n} P(z / R)
\end{aligned}
$$

Therefore Λ is an admissible operator. Applying (9) we obtain

$$
\begin{equation*}
\int_{0}^{2 \pi}\left|P\left(R e^{i \theta}\right)+e^{i \gamma} R^{n} P\left(e^{i \theta} / R\right)\right|^{p} d \theta \leqslant\left|R^{n} e^{i \gamma}+1\right| \cdot\|P\|_{p}^{p} \tag{12}
\end{equation*}
$$

for $p>0$. Since

$$
f(z):=z^{n} \overline{P(1 / \bar{z})} / P(z)
$$

is holomorphic for $|z| \leqslant 1$ with $|f(z)|=1$ on the unit circle, it follows from the maximum principle that $\left|f\left((1 / R) e^{i \theta}\right)\right| \leqslant 1$ for $1 / R<1$ and so

$$
\begin{equation*}
\left|R^{n} P\left(e^{i \theta} / R\right) / P\left(R e^{i \theta}\right)\right| \geqslant 1 \quad(R \geqslant 1) . \tag{13}
\end{equation*}
$$

Now, integrating (12) with respect to γ on $[0,2 \pi]$ and using (13), the desired result is obtained in the same way as Theorem 1.

Proof of Theorem 3. The operator Λ defined by

$$
\Lambda\left(\sum_{v=0}^{n} a_{v} z^{v}\right):=a_{0}+a_{n} z^{n}
$$

is obviously admissible. Hence by (9)

$$
\begin{equation*}
\int_{0}^{2 \pi}\left|a_{0}+a_{n} e^{i n \theta}\right|^{p} d \theta \leqslant \int_{0}^{2 \pi}\left|\sum_{v=0}^{n} a_{v} e^{i v \theta}\right|^{p} d \theta \tag{14}
\end{equation*}
$$

for all $p>0$. From the inequality

$$
\left|\frac{1+r e^{i \theta}}{1+e^{i \theta}}\right| \geqslant \frac{1+r}{2}
$$

we deduce that

$$
\left|a_{0}\right|+\left|a_{n}\right| \leqslant 2\left(\int_{0}^{2 \pi}\left|a_{0}+a_{n} e^{i \theta}\right|^{p} d \theta / \int_{0}^{2 \pi}\left|1+e^{i \theta}\right|^{p} d \theta\right)^{1 / p} .
$$

Using this in conjunction with (14), the desired result follows.
The corollary is obtained by applying Theorem 3 to the polynomial

$$
Q(z):=P(z) \prod_{j=k}^{n}\left(\frac{\zeta_{j} z-1}{z-\zeta_{j}}\right) .
$$

References

1. N. C. Ankeny and T. J. Rivlin, On a theorem of S. Bernstein, Pacific J. Math. 5 (1955), 849-852.
2. V. V. Arestov, On integral inequalities for trigonometric polynomials and their derivatives, Izv. Akad. Nauk SSSR Ser. Mat. 45 (1981), 3-22 [in Russian]; English translation: Math. USSR-Izv. 18 (1982), 1-17.
3. R. P. Boas and Q. I. Rahman, L^{p} inequalities for polynomials and entire functions, Arch. Rational Mech. Anal. 11 (1962), 34-39.
4. N. G. De Bruinn, Inequalities concerning polynomials in the complex domain, Nederl. Akad. Wetensch. Proc. 50 (1947), 1265-1272 [=Indag. Math. 9 (1947), 591-598].
5. J. G. Van der Corput and C. Visser, Inequalities concerning polynomials and trigonometric polynomials, Nederl. Akad. Wetensch. Proc. 49 (1946), 383-392 [=Indag. Math. 8 (1946), 238-247].
6. G. H. Hardy, The mean value of the modulus of an analytic function, Proc. London Math. Soc. 14 (1915), 269-277.
7. P. D. Lax, Proof of a conjecture of P. Erdös on the derivative of a polynomial, Bull. Amer. Math. Soc. 50 (1944), 509-513.
8. G. Pólya and G. Szegö, "Problems and Theorems in Analysis," Vol. 1, Springer-Verlag, New York/Heidelberg/Berlin, 1972.
9. Q. I. Rahman, Inequalities concerning polynomials and trigonometric polynomials, J. Math. Anal. Appl. 6 (1963), 303-324.
10. Q. I. Rahman and G. Schmeisser, Location of the zeros of polynomials with a prescribed norm, Trans. Amer. Math. Soc. 196 (1974), 69-78.
11. Q. I. Rahman and G. Schmeisser, "Les inégalités de Markoff et de Bernstein," Presses Univ. Montréal, Montréal, Québec, 1983.
12. M. Riesz, Formule d'interpolation pour la dérivée d'un polynôme trigonométrique, C. R. Acad. Sci. Paris 158 (1914), 1152-1154.
13. G. Szegö, Bemerkungen zu einem Satz von J. H. Grace über die Wurzeln algebraischer Gleichungen, Math. Z. 13 (1922), 28-55.
14. C. Visser, A simple proof of certain inequalities concerning polynomials, Nederl. Akad. Wetensch. Proc. 48 (1945), 276-281 [= Indag. Math. 7 (1945), 81-86].
15. A. Zygmund, A remark on conjugate series, Proc. London Math. Soc. (2) 34 (1932), 392-400.
